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Abstract—Decision making seeks the optimal choice for maxi-
mum rewards or minimal costs under certain conditions, require-
ments and constraints. Decision making problems in practice are
usually complicated as they may be partially observable, stochas-
tic, and dynamic. Such complexities make the traditional decision
making methods like mathematical programming difficult to find
the optimal choices effectively and efficiently. In this work, we
conduct a case study with the 4-player Kuhn Poker game by
combining machine learning with probabilistic model checking
to generate optimal decisions. Experimental results show that the
agent employing our method outperforms the conservative and
bluffing players regardless of the positions of players.

I. INTRODUCTION

Decision making seeks the the optimal decision, which max-
imizes rewards or minimizes costs, under certain conditions,
requirements or constraints [1]. It has a wide range of applica-
tions in different industry areas, such as marketing strategies,
route planning, and sports strategy analytics [2l]. Decision
making usually handles various factors which characterize
the problem environment including full/partial observabil-
ity, single-/multi-agent, (non-)determinism/stochasticity, static-
ity/dynamism, discreteness/continuousness, etc. [3l.

Traditionally, decision making problems are solved by math-
ematical algorithms such as linear programming [4], non-linear
programming [5] or machine learning [6]. However, the steep
learning curve of the mathematical formulas and machine
learning models often require users to have a high level of
mathematical background.

To alleviate the burden of users, one alternative is to
resort to model checking techniques [7]], a well-established
formal method which exhaustively and automatically verifies
whether a finite state model of a system satisfies a property.
Particularly, probabilistic model checking computes the (range
of) probability that a finite state model (e.g., MDP) of a
probabilistic system satisfies a property. It has been applied
to decision making problems with uncertainty [8]], [9].

On the other hand, in probabilistic model checking, prob-
abilities in the user-specified models are usually defined as
constant, variables, or generated by static functions. It cannot
accurately capture the sequential and dynamic environments
in the decision making problems with uncertainty, such as
the accumulated effects of the historical information. Such
constraints can be resolved by machine learning which em-
powers software systems to automatically learn from historical
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data and observations to infer accurate predictions, produce
reliable decisions and uncover hidden insights. Thus, it is
promising to adopt and adapt appropriate machine learning
algorithms to complement probabilistic model checking to
tackle the probabilities in the decision making problems whose
environment is partially observable, stochastic, and dynamic.

In this work, we conduct a case study on a 4-player Kuhn
Poker game to demonstrate how to combine probabilistic
model checking with machine learning techniques to solve
decision making problems. Specifically, we adopt Bayesian
inference [10] to predict the probability distributions of oppo-
nents’ decisions based on observations of the previous hands
during the game. Our experimental results show that our agent
wins the most chips when playing against the conservative and
bluffing players whose behaviors are mimicked based on the
rules proposed in [11]], regardless of the positions of players.
Related Work. Probabilistic model checking has been applied
to solve stochastic problems. For example, the probabilistic
model checker PRISM [12]] has been used to verify two-player
negotiation game [8]], where the player’s decision is specified
as a probabilistic function to model the uncertainty of the op-
ponent’s behavior. However, this approach is time-dependent
only, without considering opponent’s runtime strategy. PRISM
has also been used in elasticity decision making on the on-
demand cloud resource provision [9]]. The decision is achieved
through the probabilistic model checking of dynamic instanti-
ated MDPs, although the function of generating probabilities
is static and system specific.

2-player Kuhn Poker game has been solved by Kuhn [[13],
who developed Nash equilibrium strategies for both players.
Later, Risk and Szafron [14] have solved 3-player Kuhn poker
game by deriving a family of Nash equilibrium profiles. To our
knowledge, that is the largest Kuhn poker game solved. The
challenge of deriving Nash equilibrium strategies is that the
game tree grows larger with the number of players.

II. CASE STUDY — 4-PLAYER KUHN POKER GAME
A. Poker Game Rules

The 4-player Kuhn Poker game is a complicated version of
the 2-player Kuhn Poker game [13] which retains the essence
of Poker including bluffing. The game involves only 5 cards
- Ace, King, Queen, Jack and Ten, where Ace has the largest
value. Each player can take three actions, i.e., Check, Bet,
and Fold. At the start of each hand, each player puts down a
chip, and then he/she is dealt a card, with the last card placed



TABLE I
AN OBSERVATION TABLE FOR A CONSERVATIVE OPPONENT

Observation Frequency

Strategy Ten Jack Queen King Ace
CF 7.82 8.75 9.08 1.34 0.01
CB 0 0 0 0 0
B- 0 0.25 0.29 0.29 17.17
F- 2.15 5.83 14.3 18.55 0.17
C4 5 3 2 1 0

“ B for bet; C for check; F for fold; C4 for all four players check and -
for represents no strategy taken.

face down. The first player can bet (adding one more chip) or
check (doing nothing). When facing a bet, a player can also
bet (adding one more chip) or fold to quit the current hand.
A hand may end in a showdown either when everyone does
not bet, or when all players respond to the first bet. In the latter
case, only those who bet will join the showdown. During the
showdown, the player with the largest card wins all chips on
the table. A hand can also end without a showdown when only
one player bets and all the others fold. In this case, the player
who bets wins all chips. A new hand will start with another
player becoming the first player, rotating in a clockwise order.
The challenge of making an optimal decision in the 4-player
Kuhn Poker game is threefold. The first challenge is caused
by the uncertainty of opponents’ cards. For example, during
one hand, opponents’ cards are unknown to each other, and
even when the hand ends, the folded cards may still remain
unrevealed. The second challenge is the uncertainty about the
opponents’ strategies taken in each hand. Considering different
kinds of players, such as bluffing players and conservative
players, it is hard to predict the decisions those players may
make in each hand. Lastly, compared to the traditional 2-
player Kuhn Poker game [13], the 4-player Kuhn Poker game
introduces more complexity since a players’ strategy may
be affected by the position/order of the player in one hand.
Therefore, in this 4-player Kuhn Poker game, it is harder to
predict opponents’ strategies due to the position constraints.

B. Approach

In this work, we explore how to solve decision making
problems which involve uncertainty using probabilistic model
checking techniques. The common solutions for such deci-
sion making problems include linear programming, dynamic
programming or machine learning techniques. Those methods
either require dedicated algorithms for different problems or
have a high learning curve which causes difficulty for novices.
The purpose of our approach is to explore the capability of
model checking techniques to search for optimal decisions,
which potentially reduce the learning curve as well as efforts
of constructing and searching decision trees in the traditional
methods. To handle uncertainty, our approach explores how
to incorporate machine learning algorithms to derive insights
from imperfect information so as to predict probabilistic
distributions required in the user-specified models. In this
way, we are able to utilize historical information to help
make more accurate decisions. This enables us to tackle the
challenges in dynamic environments. In particular, there are
three components in our case study, i.e., opponent modeling,

poker game rule modeling and the best response decision,
which we introduce in the following sections.

1) Opponent Modeling: The opponent modeling phase is an
application of the machine learning component of our method
in the 4-player Kuhn Poker game case study. We design an
observation table for each opponent to record the frequencies
of strategies taken by the opponent according to the card
he/she holds. We adopt the Bayesian Inference [10] to compute
the probability distributions of three opponents’ strategies
providing the cards they hold as well as the probability
distributions of the cards held by the opponents based on their
observed betting strategies.

Observation Table. Table [I] demonstrates a snapshot of the
observation table for a conservative opponent. It is represented
as a 2-dimensional matrix. Each row corresponds to the
strategy an opponent can take, and each column corresponds
to the card an opponent holds in a hand. A strategy consists
of actions taken by an opponent in one hand. We use two bits
to encode the strategies as the maximum number of turns a
player can play is two in every hand. The betting strategy “CF”
means the opponent checks in the 1st turn and folds in the 2nd
turn. The strategy “CB” means the opponent checks in his/her
Ist turn and bets in the 2nd turn. The strategy “B-" means that
the opponent bets in his/her 1st turn and he would not have a
chance to enter the 2nd turn. The strategy “F- means that the
opponent folds in the 1st turn and thus ends his action in this
hand. We use “-” to represent no action is taken in that turn.
“C4” is a special case meaning that all four players choose to
check in their 1st turns, and thus the current hand ends after
the 4th player checks. All four players will have to show their
cards and the player with the largest card wins the game. Note
that we record a full strategy in the observation table in order
to infer the behavior of the player which may lead to the final
winning/loosing result. Each cell shown in Table [[| records the
count calculated based on an opponent’s card held and strategy
taken in a hand that are observed/partially observed.

Opponent Learning. Opponent learning in the 4-player Kuhn
Poker game is real-time, and the observation table provides
valuable insights into the opponent’s recent strategies. The
opponent’s behavior is partially observed when our agent or
he/she does not join a showdown as the card is not revealed.

Definition 1 (Hand): A 4-player Kuhn Poker hand is a tuple
H = (C,Cp,S,I,0bC) where C is the set of all five cards; Cp
is the set of observed cards; S={CF, CB, B-, F-, C4} is the set
of strategies; I is the set of opponents; ObC : I x C — {0,1}
represents whether a particular card held by an opponent is
observed. 1 represents observed and O represents unobserved.

At the end of a hand, the observation table will be updated
according to the strategies and cards observed. Function F :
IxCxS — R denotes the value to be added when updating the
observation table. Obviously, this value depends on both the
strategy taken by the opponent and the card he/she might have
in this hand. The concrete update function F' for opponent i
who has card ¢ using the strategy s is defined as follows.



0bC(i,c) =1 (1)
ObC(i,c) =0 (2)

1
F(i,c,s) = { P(c| (i,s))
Yeec, P | (i,s))

where C,, = C — Cy, is the set of unobserved cards.

There are two scenarios that we may encounter at the end of
a hand, i.e., an opponent’s card is observed and an opponent’s
card is unobserved. In the first scenario, we increase the value
of the cell in the observation table of opponent i, corresponding
to card ¢ by 1, as indicated in formula (1) in the definition
of F. In the second scenario, we need to predict the possible
card he/she is holding based on his/her current strategy taken
and his/her observed historical information recorded in the
observation table. In this case, the frequency F(i,c,s) is the
ratio between the probability P(c | (i,s)) of holding a card ¢
under the specified strategy s and the accumulated probabilities
of holding all unobserved cards. Probability P(c | (i,s)) is
calculated according to Bayesian inference shown below.

P(s | (i,¢))P(i, )

Ple] (i) = =52

P(i,s) is the probability of opponent i performing strategy s.
The value of P(i, s) is 1 in this scenario since the strategy s of
the opponent is observed. P(i, c) is the proba})ility of opponent

| Cu |
the probability of opponent i holding any unobserved card
¢ € Cy is evenly distributed. P(s | (i,c)) is the probability
of opponent i performing strategy s given that he/she holds
card c. This probability is based on the historical observations

recorded in the observation table, and its value is calculated
by Weight(i, c, s)
Doy Weight(i, ¢, s")
quency count of opponent i holding a card ¢ under strategy s
(cell (s, c) of component i’s observation table).

i holding a card c. The value of P(i,c) is , meaning that

, where Weight(i,c,s) denotes the fre-

Distribution. After learning from the opponents’ behavior
history, our agent can predict the probability distribution of
an opponent’s holding card based on his/her current strategy
taken. Through the updated observation table, we can get the
probability of opponent i holding a card ¢ under strategy s
through the following formula,

Weight(i, c, s)
> erec Weight(i,c', s)

All these probabilities constitute the opponent’s probabilistic
distributions over holding a card (card probability distribution)
and it is one input to the model checking component.

Similarly, our agent can predict the probability distribution
of the strategy which will be taken by an opponent based on
his/her current card held. The probability of a strategy s that
the opponent i holding a card ¢ might take is calculated by
the following formula,

Pric|(i,s)) =

B Weight(i, c, s)
C Y yes Weight(i, ¢, s')

All the probabilities constitute the opponent’s bet probability
distribution which is also input to the model checking stage.

Pr(s | (i;c))

2) Game Rule Modeling: The game rule modeling illus-
trates how to apply our probabilistic model checking compo-
nent in the 4-player Kuhn Poker game. As a hand in this poker
game progresses, each player will make a decision in turn.
When it is our agent’s turn, it takes the response (i.e., bet or
not) which maximizes the expected value through simulating
all opponents’ possible strategies and cards. To achieve such a
goal, we construct a probabilistic model to specify the poker
game rules, followed by properties to be verified to derive
probabilities of the chips that our agent may gain.

We use the PCSP# modeling language to specify a hand of
4-player Kuhn Poker game. The PCSP# model covers three
main parts: analyzing the card possibility of an opponent
(process Simulate_card(player) in Fig. , analyzing the action
possibility based on an opponent’s possible card (process
Betting_phase(player)), and evaluating the winning chips of
our agent in the current hand (process Evaluate). We remark
that the probability distributions as the outcome of the machine
learning stage will be used in processes Simulate_card(player)
and Betting_phase(player). We illustrate one PCSP# process
Simulate_card(player) as an example, and the complete model
is available at www.comp.nus.edu.sg/~shiling/poker.

Model for Card Possibility Analysis. In the process
Simulate_card(player) (shown in Fig. [1), the precondition
requests that the current hand does not end and the opponent
does not have a card (modeled by two if conditions in the
first two lines). The PCSP# probabilistic choice operator
pcase is used to capture all possible cards that an opponent
may have. In our analysis, the probability of an opponent
holding a card (e.g., ACE) is card_prob[pos|player]||[ACE] *
cards[ACE] [ (card_prob[pos|player]|[ACE] * cards[ACE] + --- +
card_problpos|player]|[TEN] % cards[TEN)). The variable
card_prob is declared as a 2-dimension array, and it records
the probability of each card ¢ for opponent i under the
observed action(s), according to his/her past card probability
distribution. The initialized probability of card_prob is
calculated based on the probability distribution from the
machine learning stage in Section The variable pos
is an array which tracks the opponents’ index in the arrays
card_prob, and the variable cards is an array which records
whether this card has been already occupied, value 0 for
occupied, otherwise 1. The process Own(player, ACE) assigns
the card ACE to the player. If this player has a card, then the
process moves to the betting process Betting_phase(player).
When the current hand ends, the process moves to the
evaluation process Evaluate.

Verification Properties. We define six assertions to calculate
the probabilities of our agent losing 1 or 2 chips, or winning 3,
4, 5, or 6 chips. These are all the possible situations that may
happen at the end of a hand. One assertion is shown below.

Fdefine goalloss2 (player_wins== — 2)&& (check==0);

#assert kuhn_poker reaches goalloss2 with prob;

The assertion derives the probability of the situation that the
model for the Kuhn Poker game can reach a state where the


www.comp.nus.edu.sg/~shiling/poker

Simulate_card(player) = if (\(player==first_better& & game_start)) {
if (pos|player]! =(NUM_PLAYERS — 1)&&player_turns[player|==0){
pease {
card_prob[pos|player]|[ACE]*cards|ACE)] : Own(player, ACE)
1[KING]*cards[KING] : Own(player, KING)
][QUEEN]*cards|QUEEN] : Own(player, QUEEN)
card_prob[pos[player||[JACK]xcards[JACK] : Own(player, JACK)
card_prob[pos[player||[TEN]*cards[TEN] : Own(player, TEN)}
} else {Betting_phase(player) }
} else {Evaluate};

card_prob[pos[player]
card_prob[pos[player]

Fig. 1. Model for Card Possibility Analysis
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Fig. 2. Performance of PATty over Conservative and Bluffing Players under
8 Configurations

condition goalloss?2 is satisfied. Our agent calls the PAT model
checker to exhaustively search the state space and calculate the
probabilities of the states which satisfy the condition.

3) Best Response: The best response phase captures how
to apply the decision making component of our method to the
4-player Kuhn Poker game case study. When it is our agent’s
turn to make a decision during a hand, we compute the best
response by calculating the maximum expected value (i.e., the
highest gained chips) over all possible strategies we can adopt,
based on the current and past hands’ observations.

The expected value (EV) of the gained chips for strategy s
is defined as

EV(s) =g Prob(r|s) xr,
where R = {-2,-1,3,4,5,6}, s = CB, B— or C4,

where R is the set of all possible gained chips of our agent, and
Prob(r | s) is the probability of winning r chips under strategy
s corresponding to the assertion defined in Section |lI-B

III. EXPERIMENTS

In our experiment for the 4-player Kuhn Poker game, one
agent (called P) simulates a player who adopts our method and
the other three agents randomly mimic two types of players,
namely, conservative player (called C) and bluffing player
(called B). We run 10 games, and each game consists of 1000
hands. In each hand, each player plays based on the rules
defined in Section [II| and all the players take turns to start the
hands. After running the 10 games, the average performance
across the 10 games is chosen for our analysis. Note that there
is no limit for the number of chips that a player can bet in

each gameﬂ

IThe detailed information of the experiments is available at [www.comp.
nus.edu.sg/~shiling/poker.

The behaviors of the players are based on [11], where the
behavior of the conservative player is similar to that of the
tight-passive player, i.e., such a player participates in few
hands, only considers playing those with a high probability of
winning, and rarely raises the bet; the behavior of the bluffing
player is similar to that of loose player, i.e., such a player
often overestimates the hand and participates the bet.

Our experiment considers all 8 configurations for 4 play-
ers in terms of their roles, i.e., P'B2B3B* P'B2B3(C%,
P'B>C®B*, P'B2C3C*, P'C?B*B*, P'C?B3C*, P'C*C*B*,
and P'C2C3C*, where superscripts 1, 2, 3 and 4 represent
the player IDs. In all configurations, the first hand will start
by Player 1; subsequently, the next hand will start by the
player sitting next to the left-hand side of the player who
starts in the previous hand. Figure 2] shows the gained chips
of the player using our method (i.e., P) in all 8 configurations.
The result indicates that P wins in all configurations by
its learning capability and exhaustive search for an optimal
decision. For example, in P'C?B3C*, P gradually wins the
chips and ends up with a positive gain after it cumulatively
learning opponents’ behaviors, despite its initial loss.

IV. CONCLUSION

We conduct a case study with 4-player Kuhn Poker game
by combining probabilistic model checking with machine
learning. Experimental results show that the agent employing
our method wins the most chips when playing against the
conservative and bluffing players.
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